Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622459

RESUMO

The simultaneous measurement of three-dimensional (3D) genome structure and gene expression of individual cells is critical for understanding a genome's structure-function relationship, yet this is challenging for existing methods. Here we present 'Linking mRNA to Chromatin Architecture (LiMCA)', which jointly profiles the 3D genome and transcriptome with exceptional sensitivity and from low-input materials. Combining LiMCA and our high-resolution scATAC-seq assay, METATAC, we successfully characterized chromatin accessibility, as well as paired 3D genome structures and gene expression information, of individual developing olfactory sensory neurons. We expanded the repertoire of known olfactory receptor (OR) enhancers and discovered unexpected rules of their dynamics: OR genes and their enhancers are most accessible during early differentiation. Furthermore, we revealed the dynamic spatial relationship between ORs and enhancers behind stepwise OR expression. These findings offer valuable insights into how 3D connectivity of ORs and enhancers dynamically orchestrate the 'one neuron-one receptor' selection process.

2.
Elife ; 122023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108811

RESUMO

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Camundongos , Receptores Odorantes/genética , Epigenômica , Alelos , Epigênese Genética
3.
Science ; 381(6662): 1112-1119, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676945

RESUMO

The cerebellum contains most of the neurons in the human brain and exhibits distinctive modes of development and aging. In this work, by developing our single-cell three-dimensional (3D) genome assay-diploid chromosome conformation capture, or Dip-C-into population-scale (Pop-C) and virus-enriched (vDip-C) modes, we resolved the first 3D genome structures of single cerebellar cells, created life-spanning 3D genome atlases for both humans and mice, and jointly measured transcriptome and chromatin accessibility during development. We found that although the transcriptome and chromatin accessibility of cerebellar granule neurons mature in early postnatal life, 3D genome architecture gradually remodels throughout life, establishing ultra-long-range intrachromosomal contacts and specific interchromosomal contacts that are rarely seen in neurons. These results reveal unexpected evolutionarily conserved molecular processes that underlie distinctive features of neural development and aging across the mammalian life span.


Assuntos
Senescência Celular , Cerebelo , Montagem e Desmontagem da Cromatina , Genoma , Neurônios , Animais , Humanos , Camundongos , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios/metabolismo , Imageamento Tridimensional , Análise de Célula Única , Atlas como Assunto
4.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36865235

RESUMO

The cerebellum contains most of the neurons in the human brain, and exhibits unique modes of development, malformation, and aging. For example, granule cells-the most abundant neuron type-develop unusually late and exhibit unique nuclear morphology. Here, by developing our high-resolution single-cell 3D genome assay Dip-C into population-scale (Pop-C) and virus-enriched (vDip-C) modes, we were able to resolve the first 3D genome structures of single cerebellar cells, create life-spanning 3D genome atlases for both human and mouse, and jointly measure transcriptome and chromatin accessibility during development. We found that while the transcriptome and chromatin accessibility of human granule cells exhibit a characteristic maturation pattern within the first year of postnatal life, 3D genome architecture gradually remodels throughout life into a non-neuronal state with ultra-long-range intra-chromosomal contacts and specific inter-chromosomal contacts. This 3D genome remodeling is conserved in mice, and robust to heterozygous deletion of chromatin remodeling disease-associated genes (Chd8 or Arid1b). Together these results reveal unexpected and evolutionarily-conserved molecular processes underlying the unique development and aging of the mammalian cerebellum.

5.
Nature ; 615(7951): 292-299, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859543

RESUMO

Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.


Assuntos
Comportamento Animal , Encéfalo , Emoções , Coração , Animais , Camundongos , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Mapeamento Encefálico , Emoções/fisiologia , Coração/fisiologia , Comportamento Animal/fisiologia , Eletrofisiologia , Optogenética , Córtex Insular/fisiologia , Frequência Cardíaca , Channelrhodopsins , Taquicardia/fisiopatologia , Marca-Passo Artificial
6.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36993168

RESUMO

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.

7.
Front Mol Biosci ; 9: 959688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275628

RESUMO

The three-dimensional (3D) structure of chromosomes influences essential biological processes such as gene expression, genome replication, and DNA damage repair and has been implicated in many developmental and degenerative diseases. In the past two centuries, two complementary genres of technology-microscopy, such as fluorescence in situ hybridization (FISH), and biochemistry, such as chromosome conformation capture (3C or Hi-C)-have revealed general principles of chromosome folding in the cell nucleus. However, the extraordinary complexity and cell-to-cell variability of the chromosome structure necessitate new tools with genome-wide coverage and single-cell precision. In the past decade, single-cell Hi-C emerges as a new approach that builds upon yet conceptually differs from bulk Hi-C assays. Instead of measuring population-averaged statistical properties of chromosome folding, single-cell Hi-C works as a proximity-based "biochemical microscope" that measures actual 3D structures of individual genomes, revealing features hidden in bulk Hi-C such as radial organization, multi-way interactions, and chromosome intermingling. Single-cell Hi-C has been used to study highly dynamic processes such as the cell cycle, cell-type-specific chromosome architecture ("structure types"), and structure-expression interplay, deepening our understanding of DNA organization and function.

8.
Proc Natl Acad Sci U S A ; 119(40): e2206450119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161934

RESUMO

Recent advances in single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) and its coassays have transformed the field of single-cell epigenomics and transcriptomics. However, the low detection efficiency of current methods has limited our understanding of the true complexity of chromatin accessibility and its relationship with gene expression in single cells. Here, we report a high-sensitivity scATAC-seq method, termed multiplexed end-tagging amplification of transposase accessible chromatin (METATAC), which detects a large number of accessible sites per cell and is compatible with automation. Our high detectability and statistical framework allowed precise linking of enhancers to promoters without merging single cells. We systematically investigated allele-specific accessibility in the mouse cerebral cortex, revealing allele-specific accessibility of promotors of certain imprinted genes but biallelic accessibility of their enhancers. Finally, we combined METATAC with our high-sensitivity single-cell RNA sequencing (scRNA-seq) method, multiple annealing and looping based amplification cycles for digital transcriptomics (MALBAC-DT), to develop a joint ATAC-RNA assay, termed METATAC and MALBAC-DT coassay by sequencing (M2C-seq). M2C-seq achieved significant improvements for both ATAC and RNA compared with previous methods, with consistent performance across cell lines and early mouse embryos.


Assuntos
Cromatina , Transposases , Animais , Cromatina/genética , Camundongos , RNA , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Transcriptoma , Transposases/genética , Transposases/metabolismo
9.
STAR Protoc ; 2(3): 100622, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34195675

RESUMO

3D genome structure is highly heterogeneous among single cells and contributes to cellular functions. Our single-cell chromatin conformation capture (3C/Hi-C) technique, Dip-C, enables high-resolution (20 kb or ∼100 nm) 3D genome structure determination from single human and mouse cells. Dip-C is robust, fast, cheap, and does not require specialized equipment. This protocol describes using human and mouse brain samples to perform Dip-C, which has also been applied to other tissue types including the human blood and mouse eye, nose, and embryo. For complete details on the use and execution of this protocol, please refer to Tan et al. (2021).


Assuntos
Cromatina/metabolismo , Genoma , Análise de Célula Única/métodos , Animais , Soluções Tampão , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Reação em Cadeia da Polimerase/métodos , Controle de Qualidade , Software
10.
Nat Commun ; 12(1): 3798, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145235

RESUMO

Olfactory sensory neurons (OSNs) are functionally defined by their expression of a unique odorant receptor (OR). Mechanisms underlying singular OR expression are well studied, and involve a massive cross-chromosomal enhancer interaction network. Trace amine-associated receptors (TAARs) form a distinct family of olfactory receptors, and here we find that mechanisms regulating Taar gene choice display many unique features. The epigenetic signature of Taar genes in TAAR OSNs is different from that in OR OSNs. We further identify that two TAAR enhancers conserved across placental mammals are absolutely required for expression of the entire Taar gene repertoire. Deletion of either enhancer dramatically decreases the expression probabilities of different Taar genes, while deletion of both enhancers completely eliminates the TAAR OSN populations. In addition, both of the enhancers are sufficient to drive transgene expression in the partially overlapped TAAR OSNs. We also show that the TAAR enhancers operate in cis to regulate Taar gene expression. Our findings reveal a coordinated control of Taar gene choice in OSNs by two remote enhancers, and provide an excellent model to study molecular mechanisms underlying formation of an olfactory subsystem.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Olfatória/metabolismo , Imagem Óptica , Receptores Acoplados a Proteínas G/metabolismo , Olfato/genética , Peixe-Zebra/genética
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593904

RESUMO

Single-nucleotide variants (SNVs), pertinent to aging and disease, occur sporadically in the human genome, hence necessitating single-cell measurements. However, detection of single-cell SNVs suffers from false positives (FPs) due to intracellular single-stranded DNA damage and the process of whole-genome amplification (WGA). Here, we report a single-cell WGA method termed multiplexed end-tagging amplification of complementary strands (META-CS), which eliminates nearly all FPs by virtue of DNA complementarity, and achieved the highest accuracy thus far. We validated META-CS by sequencing kindred cells and human sperm, and applied it to other human tissues. Investigation of mature single human neurons revealed increasing SNVs with age and potentially unrepaired strand-specific oxidative guanine damage. We determined SNV frequencies along the genome in differentiated single human blood cells, and identified cell type-dependent mutational patterns for major types of lymphocytes.


Assuntos
Variações do Número de Cópias de DNA , Leucócitos Mononucleares/citologia , Neurônios/citologia , Análise de Célula Única/métodos , Espermatozoides/citologia , Adulto , Idoso , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Mutação , Neurônios/fisiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes
12.
Cell ; 184(3): 741-758.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484631

RESUMO

Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.


Assuntos
Encéfalo/crescimento & desenvolvimento , Genoma , Sensação/genética , Transcrição Gênica , Alelos , Animais , Animais Recém-Nascidos , Linhagem da Célula/genética , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Redes Reguladoras de Genes , Loci Gênicos , Impressão Genômica , Camundongos , Família Multigênica , Neuroglia/metabolismo , Neurônios/metabolismo , Transcriptoma/genética , Córtex Visual/metabolismo
14.
Nat Struct Mol Biol ; 26(4): 297-307, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936528

RESUMO

Sensory neurons in the mouse eye and nose have unusual chromatin organization. Here we report their three-dimensional (3D) genome structure at 20-kilobase (kb) resolution, achieved by applying our recently developed diploid chromatin conformation capture (Dip-C) method to 409 single cells from the retina and the main olfactory epithelium of adult and newborn mice. The 3D genome of rod photoreceptors exhibited inverted radial distribution of euchromatin and heterochromatin compared with that of other cell types, whose nuclear periphery is mainly heterochromatin. Such genome-wide inversion is not observed in olfactory sensory neurons (OSNs). However, OSNs exhibited an interior bias for olfactory receptor (OR) genes and enhancers, in clear contrast to non-neuronal cells. Each OSN harbored multiple aggregates of OR genes and enhancers from different chromosomes. We also observed structural heterogeneity of the protocadherin gene cluster. This type of genome organization may provide the structural basis of the 'one-neuron, one-receptor' rule of olfaction.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Fosfolipídeos/metabolismo , Análise de Componente Principal , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Schizosaccharomyces/metabolismo , Células Receptoras Sensoriais/metabolismo
15.
Science ; 361(6405): 924-928, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166492

RESUMO

Three-dimensional genome structures play a key role in gene regulation and cell functions. Characterization of genome structures necessitates single-cell measurements. This has been achieved for haploid cells but has remained a challenge for diploid cells. We developed a single-cell chromatin conformation capture method, termed Dip-C, that combines a transposon-based whole-genome amplification method to detect many chromatin contacts, called META (multiplex end-tagging amplification), and an algorithm to impute the two chromosome haplotypes linked by each contact. We reconstructed the genome structures of single diploid human cells from a lymphoblastoid cell line and from primary blood cells with high spatial resolution, locating specific single-nucleotide and copy number variations in the nucleus. The two alleles of imprinted loci and the two X chromosomes were structurally different. Cells of different types displayed statistically distinct genome structures. Such structural cell typing is crucial for understanding cell functions.


Assuntos
Cromatina/ultraestrutura , DNA/ultraestrutura , Diploide , Genoma Humano , Impressão Genômica , Conformação de Ácido Nucleico , Algoritmos , Alelos , Células Sanguíneas/química , Células Sanguíneas/ultraestrutura , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Cromatina/química , Cromatina/genética , Cromossomos Humanos X/ultraestrutura , DNA/química , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica , Haplótipos , Humanos , Imageamento Tridimensional/métodos , Técnicas de Amplificação de Ácido Nucleico , Conformação Proteica , Análise de Célula Única/métodos
16.
Chem Senses ; 43(6): 427-432, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29796642

RESUMO

Different regions of the mammalian nose smell different odors. In the mouse olfactory system, spatially regulated expression of >1000 olfactory receptors (ORs) along the dorsomedial-ventrolateral (DV) axis forms a topological map in the main olfactory epithelium (MOE). However, the locations of most ORs along the DV axis are currently unknown. By sequencing mRNA of 12 isolated MOE pieces, we mapped out the DV locations-as quantified by "zone indices" on a scale of 1-5-of 1033 OR genes with an estimated error of 0.3 zone indices. Our map covered 81% of all intact OR genes and 99.4% of the total OR mRNA abundance. Spatial regulation tended to vary gradually along chromosomes. We further identified putative non-OR genes that may exhibit spatial expression along the DV axis.


Assuntos
Mucosa Olfatória/inervação , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/metabolismo , Animais , Regulação da Expressão Gênica , Camundongos , Transcriptoma
17.
Science ; 356(6334): 189-194, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408603

RESUMO

Single-cell genomics is important for biology and medicine. However, current whole-genome amplification (WGA) methods are limited by low accuracy of copy-number variation (CNV) detection and low amplification fidelity. Here we report an improved single-cell WGA method, Linear Amplification via Transposon Insertion (LIANTI), which outperforms existing methods, enabling micro-CNV detection with kilobase resolution. This allowed direct observation of stochastic firing of DNA replication origins, which differs from cell to cell. We also show that the predominant cytosine-to-thymine mutations observed in single-cell genomics often arise from the artifact of cytosine deamination upon cell lysis. However, identifying single-nucleotide variations (SNVs) can be accomplished by sequencing kindred cells. We determined the spectrum of SNVs in a single human cell after ultraviolet radiation, revealing their nonrandom genome-wide distribution.


Assuntos
Elementos de DNA Transponíveis/genética , Mutagênese Insercional , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Linhagem Celular , Citosina/química , Variações do Número de Cópias de DNA , Desaminação , Genoma Humano , Genômica/métodos , Humanos , Origem de Replicação , Timina/química
18.
Mol Syst Biol ; 11(12): 844, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26646940

RESUMO

In mammals, each olfactory sensory neuron randomly expresses one, and only one, olfactory receptor (OR)--a phenomenon called the "one-neuron-one-receptor" rule. Although extensively studied, this rule was never proven for all ~1,000 OR genes in one cell at once, and little is known about its dynamics. Here, we directly tested this rule by single-cell transcriptomic sequencing of 178 cells from the main olfactory epithelium of adult and newborn mice. To our surprise, a subset of cells expressed multiple ORs. Most of these cells were developmentally immature. Our results illustrated how the "one-neuron-one-receptor" rule may have been established: At first, a single neuron temporarily expressed multiple ORs--seemingly violating the rule--and then all but one OR were eliminated. This work provided experimental evidence that epigenetic regulation in the olfactory system selects a single OR by suppressing a few transiently expressed ORs in a single cell during development.


Assuntos
Perfilação da Expressão Gênica/métodos , Neurônios Receptores Olfatórios/citologia , Receptores Odorantes/genética , Análise de Célula Única/métodos , Animais , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Análise de Sequência de RNA/métodos
19.
PLoS One ; 10(3): e0120889, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822772

RESUMO

Recently, Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) has been developed for whole genome amplification of an individual cell, relying on quasilinear instead of exponential amplification to achieve high coverage. Here we adapt MALBAC for single-cell transcriptome amplification, which gives consistently high detection efficiency, accuracy and reproducibility. With this newly developed technique, we successfully amplified and sequenced single cells from 3 germ layers from mouse embryos in the early gastrulation stage, and examined the epithelial-mesenchymal transition (EMT) program among cells in the mesoderm layer on a single-cell level.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Transcriptoma/genética , Animais , Linhagem Celular , Transição Epitelial-Mesenquimal/genética , Gastrulação/genética , Camadas Germinativas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
20.
Proc Natl Acad Sci U S A ; 110(52): 21148-52, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24344257

RESUMO

Mammals sense odors through the gene family of olfactory receptors (ORs). Despite the enormous number of OR genes (∼1,400 in mouse), each olfactory sensory neuron expresses one, and only one, of them. In neurobiology, it remains a long-standing mystery how this singularity can be achieved despite intrinsic stochasticity of gene expression. Recent experiments showed an epigenetic mechanism for maintaining singular OR expression: Once any ORs are activated, their expression inhibits further OR activation by down-regulating a histone demethylase Lsd1 (also known as Aof2 or Kdm1a), an enzyme required for the removal of the repressive histone marker H3K9me3 on OR genes. However, it remains unclear at a quantitative level how singularity can be initiated in the first place. In particular, does a simple activation/feedback scheme suffice to generate singularity? Here we show theoretically that rare events of histone demethylation can indeed produce robust singularity by separating two timescales: slow OR activation by stepwise H3K9me3 demethylation, and fast feedback to turn off Lsd1. Given a typical 1-h response of transcriptional feedback, to achieve the observed extent of singularity (only 2% of neurons express more than one ORs), we predict that OR activation must be as slow as 5­10 d-a timescale compatible with experiments. Our model further suggests H3K9me3-to-H3K9me2 demethylation as an additional rate-limiting step responsible for OR singularity. Our conclusions may be generally applicable to other systems where monoallelic expression is desired, and provide guidelines for the design of a synthetic system of singular expression.


Assuntos
Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Histona Desmetilases/metabolismo , Modelos Neurológicos , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Retroalimentação Fisiológica/fisiologia , Cinética , Camundongos , Oxirredutases N-Desmetilantes/metabolismo , Receptores Odorantes/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA